Two-Stage Learning Kernel Algorithms

نویسندگان

  • Corinna Cortes
  • Mehryar Mohri
  • Afshin Rostamizadeh
چکیده

This paper examines two-stage techniques for learning kernels based on a notion of alignment. It presents a number of novel theoretical, algorithmic, and empirical results for alignmentbased techniques. Our results build on previous work by Cristianini et al. (2001), but we adopt a different definition of kernel alignment and significantly extend that work in several directions: we give a novel and simple concentration bound for alignment between kernel matrices; show the existence of good predictors for kernels with high alignment, both for classification and for regression; give algorithms for learning a maximum alignment kernel by showing that the problem can be reduced to a simple QP; and report the results of extensive experiments with this alignment-based method in classification and regression tasks, which show an improvement both over the uniform combination of kernels and over other state-of-the-art learning kernel methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

یادگیری نیمه نظارتی کرنل مرکب با استفاده از تکنیک‌های یادگیری معیار فاصله

Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...

متن کامل

Impact of Patients’ Gender on Parkinson’s disease using Classification Algorithms

In this paper the accuracy of two machine learning algorithms including SVM and Bayesian Network are investigated as two important algorithms in diagnosis of Parkinson’s disease. We use Parkinson's disease data in the University of California, Irvine (UCI). In order to optimize the SVM algorithm, different kernel functions and C parameters have been used and our results show that SVM with C par...

متن کامل

Generalization Guarantees for a Binary Classi cation Framework for Two-Stage Multiple Kernel Learning

We present generalization bounds for the TS-MKL framework for two stage multiple kernel learning. We also present bounds for sparse kernel learning formulations within the TS-MKL framework.

متن کامل

Generalization Guarantees for a Binary Classification Framework for Two-Stage Multiple Kernel Learning

We present generalization bounds for the TS-MKL framework for two stage multiple kernel learning. We also present bounds for sparse kernel learning formulations within the TS-MKL framework.

متن کامل

Two view learning: SVM-2K, Theory and Practice

Kernel methods make it relatively easy to define complex highdimensional feature spaces. This raises the question of how we can identify the relevant subspaces for a particular learning task. When two views of the same phenomenon are available kernel Canonical Correlation Analysis (KCCA) has been shown to be an effective preprocessing step that can improve the performance of classification algo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010